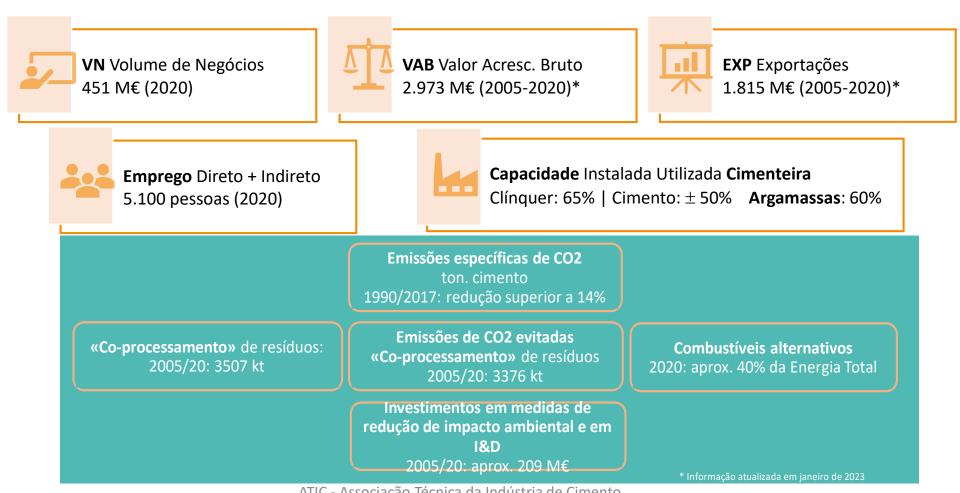
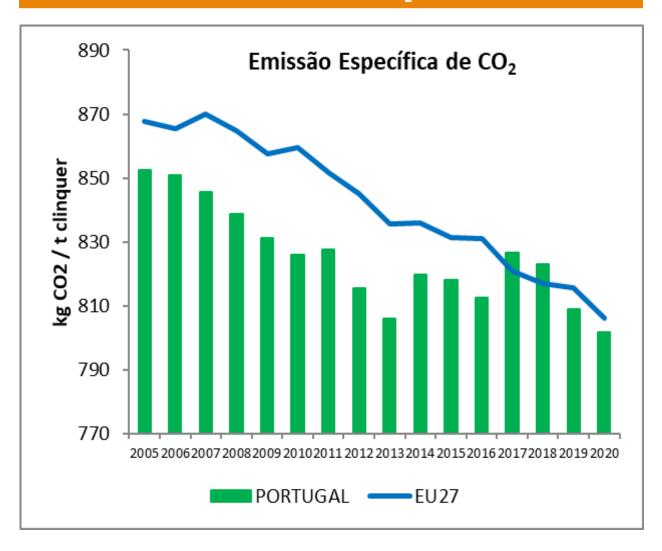
ATZC

Novos tipos de cimento – reduzir a pegada ecológica na construção

Ângela Nunes 5 de junho de 2023 Dia do betão

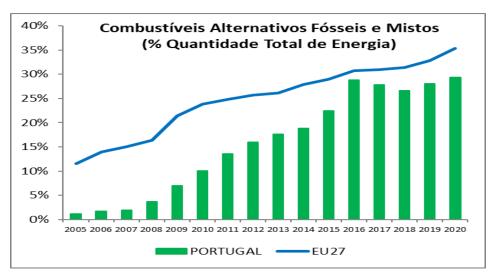


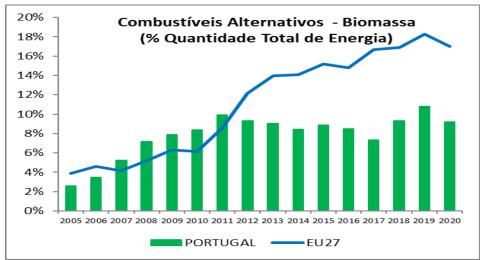

ATIC | A Indústria Cimenteira Nacional

"Certos setores industriais com utilização intensiva de energia, como (...) as cimenteiras, são indispensáveis para a economia europeia, visto fornecerem várias cadeias de valor fundamentais." Pacto Ecológico Europeu (2019)

ATIC | A Descarbonização da Indústria Cimenteira

Emissões de CO₂




Redução superior a 14% nas emissões específicas de CO_2 por tonelada de cimento (1990-2017)

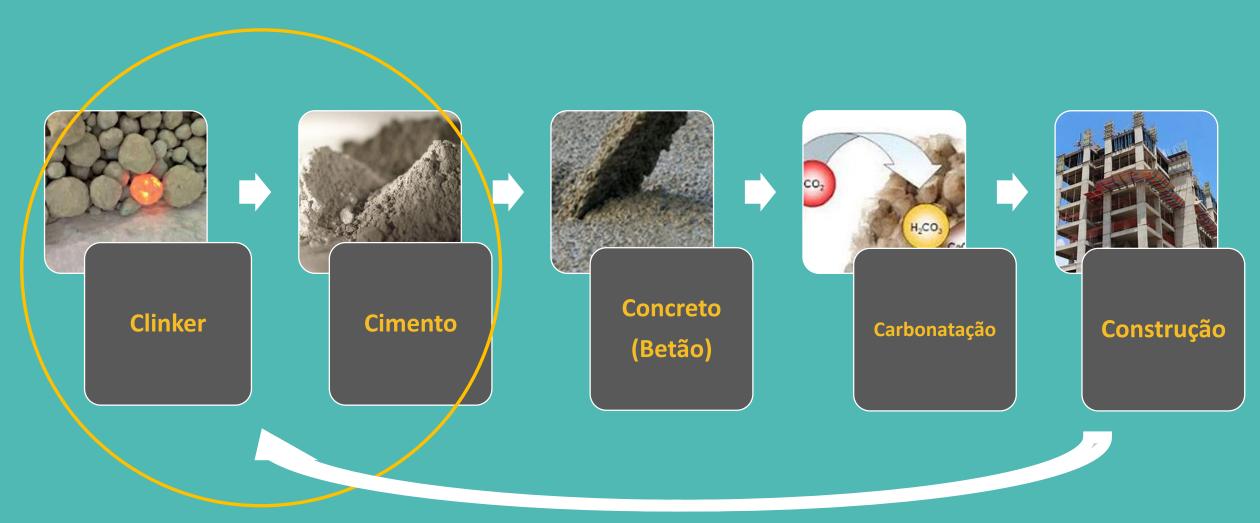
- ✓ melhorias de eficiência térmica;
- ✓ redução de clínquer no cimento;
- ✓ aumento do consumo de combustíveis alternativos contendo biomassa como substitutos de fontes de energia fóssil (cerca de 40% da Energia Total em 2020), e consequente melhoria do consumo de energia.

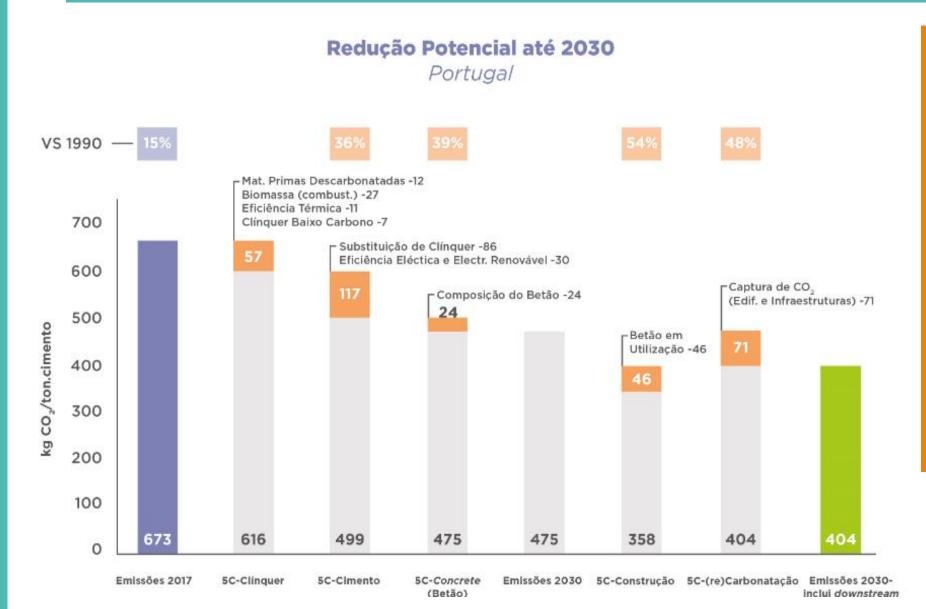
ATIC | A Descarbonização da Indústria Cimenteira

Combustíveis Alternativos

2005-2020:

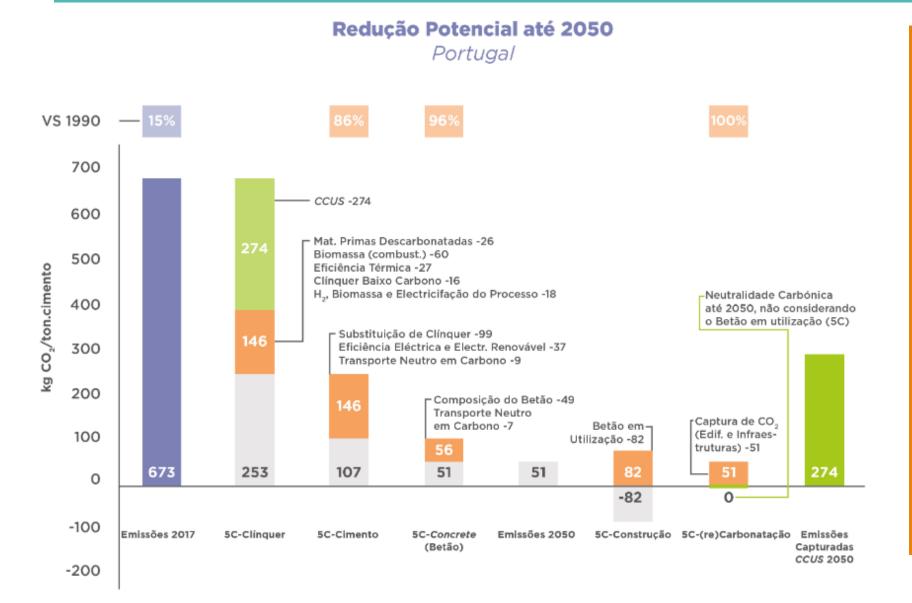
✓ "Co-processamento" de resíduos – 3.507 Kt


✓ Consumo de coque de petróleo evitado – 1.129 Kt =


 ✓ Emissões de CO₂ evitadas graças ao "Coprocessamento" – 3.376 Kt

Investimentos em medidas de redução do impacto ambiental e em I&D: 209 M€

Os 5 C's – O nosso Roadmap da Descarbonização nas 5 frentes da cadeia de valor



Cenário "reduzir pegada CO ₂ " 2030 (-48% vs.1990	0)	Cenário "neutralidade carbónica" 2050
 Eficiência energética térmica: +4% Combustíveis alternativos: 60 a 70% (30% biomassa de resíduos) Matérias-primas descarbonatadas: 3,5% CCUS: Não disponível ainda à escala comercial até 2030 (apenas instalações-piloto) 	Clínquer (C1)	 Eficiência energética térmica: +14% Combustíveis alternativos: 90% (50% biomassa de resíduos) Hidrogénio: 10% Matérias-primas descarbonatadas: 8% CCUS: disponível à escala comercial (pós-2030) (35%) BECCS: Possibilidade de emissões negativas de CO2
 Ajustamento portfolio produtos: CEM II/C, cimentos com argilas calcinadas Redução da incorporação de clínquer: 65% 	Cimento (C2)	 Ajustamento portfolio produtos: CEM II/C & CEM VI, cimentos com argilas calcinadas Redução da incorporação de clínquer: < 60% Novos tipos de ligantes hidráulicos
Otimização da utilização do betão em função dos requisitos (e.g., classes de exposição / resistência), qualidade do betão, novos plastificantes, redução ligante.	Betão (C3)	Otimização da utilização do betão em função dos requisitos (e.g., classes de exposição / resistência), qualidade do betão, novos plastificantes, redução ligante.
 Melhoria métodos de construção em betão para redução consumo de ligante e desperdício em obra. Industrialização da construção: pré-fabricação, 3D-printing de betão, construção modular. Reutilização e reciclagem de materiais 	Construção (C4)	 Melhoria adicional métodos de construção em betão para redução consumo de ligante e desperdício em obra. Industrialização da construção: pré-fabricação, 3D-printing de betão, construção modular. Reuso e reciclagem de materiais
(re)Carbonatação de 20% das emissões de processo (metodologia IVL, Swedish Environmental Research Institute)	(re)Carbonatação (C5)	(re)Carbonatação de 20% das emissões de processo (metodologia IVL, Swedish Environmental Research Institute)

Objetivo

- redução das emissões de CO₂, Vs. 1990, de cerca de 48% (até 404 kgCO₂/t cimento) ao longo de toda a cadeia de valor (36%, ou seja, até 499 kgCO₂/t cimento, se considerarmos a cadeia até ao cimento);
- Esta redução será feita ainda sem o recurso a tecnologias de natureza mais disruptiva, como é o caso das tecnologias CCUS e Hidrogénio.

Objetivo

- redução das emissões de CO₂,
 Vs. 1990, de cerca de 65% (até 274 kgCO₂/t cimento) sem o recurso a tecnologias de natureza mais disruptiva como é o caso das tecnologias CCUS e do Hidrogénio, cuja disponibilidade se espera passar a existir a uma escala comercial a partir de 2030;
- Essas tecnologias destinar-seão a eliminar os restantes 35%
 (274 kgCO₂/t cimento) das
 emissões de CO₂ que separam
 o setor da neutralidade
 carbónica ao longo da cadeia
 de valor completa.

C1 – Clinquer

Clínquer de baixo teor em carbono e utilização de mineralizadores.

Modificação da composição química e mineralógica face ao clínquer convencional - utilização de novos tipos de adições, nomeadamente, as argilas calcinadas em combinação com fíler calcário

Numa primeira fase utilização reservada a cimentos para aplicações específicas (nichos de mercado) devido a morosidade no processo de normalização (mais do que devido a questões de tecnologia/I&D)

C1 – Clinquer

Consumo de matérias primas secundárias descarbonatadas

em substituição de matérias primas virgens e utilização de combustíveis alternativos

INVESTIMENTOS C1

Estimativa para o investimento:

- € 240 milhões (até 2030)
 - € 1.170 milhões (pós 2030)

Aumento da TGR - Objetivo
"zero deposição em aterro" de
resíduos não recicláveis e
promoção da valorização de CA
e MPS enquanto alavanca para a
descarbonização

Medidas de incentivo à produção nacional de Matérias Primas, em especial os Resíduos de Construção e Demolição, contribuindo para a circularidade da economia

Acesso à utilização de RCDs e outros resíduos existentes em aterro e com viabilidade de utilização (landfill mining)

C2 – Cimento

- Ajustamento portfolio produtos: CEM II/C, cimentos com argilas calcinadas
- Redução da incorporação de clinquer: 65%

Cimento (C2)

- Ajustamento portfolio produtos: CEM II/C & CEM VI, cimentos com argilas calcinadas
- Redução da incorporação de clinquer: < 60%
- Novos tipos de ligantes hidráulicos

INVESTIMENTOS C2

Estimativa para o investimento:

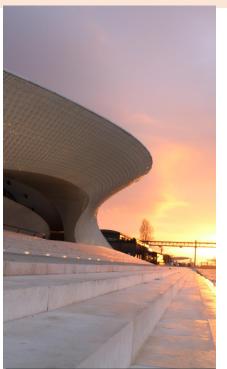
- € 220 milhões (até 2030)
- € 310 milhões (pós 2030)

Desenvolvimento de cimentos e betões de baixo carbono deve ser incentivado

Necessidade de maior rapidez no processo normativo para adoção destes produtos permitindo a sua colocação imediata no mercado

Quadro regulatório e fiscal de promoção da utilização de novos tipos de cimento com menor pegada de carbono - as compras públicas ecológicas e as políticas para produtos sustentáveis são uma oportunidade

C3 – Betão (Concrete)


O principal produto final do cimento é o betão, que a seguir à água

é o material comum mais utilizado na terra

INVESTIMENTOS C3
Estimativa para o investimento:

- € 10 milhões (até 2030)
- € 20 milhões (pós 2030)

Betão com menor incorporação de cimento, e com agregados reciclados e agregados produzidos localmente

Políticas baseadas no princípio da neutralidade do material e na análise berço a berço - metodologia do ciclo de vida

Encontrar as **soluções construtivas com menor pegada carbónica** e que levem em consideração a performance do produto durante o seu uso e depois da sua vida útil.

A neutralidade carbónica na construção vai exigir **novas competências e técnicas de construção**

Necessidade de uma estratégia para a construção sustentável — promoção da cooperação entre arquitetos, autoridades locais e engenheiros e promover a formação para o desenvolvimento de projetos energeticamente eficientes e uso de betão com baixo conteúdo carbónico.

C4 – Construção

- -Uma abordagem mais circular aos edifícios é fundamental para a redução de emissões.
- -Uma maior industrialização é essencial para reduzir desperdício e assegurar mão-obra

INVESTIMENTOS C4

Estimativa para o investimento:

- n.a. (até 2030)
- n.a. (pós 2030)

As políticas devem potenciar as diferentes propriedades dos materiais de construção:

- Durabilidade
- ✓ Reciclabilidade
- ✓ Inércia térmica
- ✓ Potencial de (re)carbonação

C4 – Construção

Manifesto do Cimento e do Betão para a Construção Sustentável e para as Cidades do Futuro

Novo Bauhaus Europeu: Beleza, Sustentabilidade, Inclusividade

Valores fundamentais

- 1. Sustentabilidade e neutralidade carbónica
- Fornecimento responsável
- 3. Produção local e circularidade
- Gestão ativa de energia
- 5. Duração e adaptação
- 6. Expansão de espaços verdes
- 7. Respeito por diferentes materiais de construção
- 8. Digitalização e acessibilidade
- Mobilidade sustentável
- 10. Transformação das cidades em sumidouros de CO₂

C5 – (re)Carbonatação

O betão absorve o CO2 durante o seu tempo de vida

INVESTIMENTOS C5 Estimativa para o investimento:

- € 20 milhões (até 2030)
- n.a. (pós 2030)

Na reciclagem, no fim de vida útil, a absorção poderá ser potenciada nos RCDs expondo os mesmos aos gases de exaustão das chaminés dos fornos

Minerais naturais como a olivina e basalto depois de triturados também podem ser recarbonatados pelo mesmo processo

A (re)Carbonatação do betão durante o seu ciclo de vida deve ser totalmente reconhecida na contabilização de emissões de CO₂, nas metodologias de determinação da pegada carbónica e ser certificada como método de remoção de CO₂

ATIC | Conclusões

Celeridade na elaboração e aprovação de novas normas

Promoção da sua utilização através de um esforço conjunto:

Iniciativas do setor junto de gabinetes de projeto, engenheiros, arquitetos, consumidores e pela administração nacional:

- prescrição da sua utilização nos cadernos encargos de compras públicas;
- eventual tratamento fiscal diferenciado à sua utilização promovendo a sua sustentabilidade ambiental.

ATIC | Conclusões

A IC está comprometida com o desenvolvimento de novos tipos de cimento de baixo carbono, mas este terá que ser um esforço conjunto:

"Apelamos, por isso, a todas as partes interessadas, que se juntem ao setor na prossecução deste compromisso que nos propomos cumprir e que é e será sem dúvida um grande desafio que nos levará a alcançar os mais elevados padrões de desempenho."

Obrigado

www.atic.pt

cimento.atic@atic.pt

ATIC no LinkedIn

